Problem 1. Let $A B C$ be an equilateral triangle. P is a variable point internal to the triangle and its perpendicular distances to the sides are denoted by a^{2}, b^{2} and c^{2} for positive real numbers a, b and c. Find the locus of points P so that a, b and c can be the sides of a non-degenerate triangle.

Problem 2. Prove that any bijective function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ can be written as $f=u+v$ where $u, v: \mathbb{Z} \rightarrow \mathbb{Z}$ are bijective functions.

Problem 3. Given a positive integer $a>1$, prove that any positive integer N has a multiple in the sequence

$$
\left(a_{n}\right)_{n \geq 1}, \quad a_{n}=\left\lfloor\frac{a^{n}}{n}\right\rfloor .
$$

$(\lfloor x\rfloor$ denotes the largest integer not greater than $x)$
Problem 4. Consider a square of side length a positive integer n. Suppose that there are $(n+1)^{2}$ points in the interior of the square. Show that three of these points define a (possibly degenerate) triangle of area at most $\frac{1}{2}$.

[^0]Time allowed is 5 hours.

[^0]: Every problem is worth 7 points.

